Acta Cryst. (1969). B25, 404
Redetermination of thermal motion and interatomic distances in urea.* By Aimery Caron, Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, U.S.A. and Jerry Donohue, Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.
(Received 10 September 1968)
A minor error in the program used in a previous three-dimensional least-squares refinement of urea has been corrected. Revised values for the thermal and positional parameters are presented.

The discovery of a keypunch error in our copy of the program (Palenik, 1962) which we used in the refinement (Caron \& Donohue, 1964) of the three-dimensional data from urea (Vaughan \& Donohue, 1952) has made it necessary that that refinement be repeated with a corrected program. Fortunately, the punching error affected only the values of the derivatives of the imaginary parts of the $F_{h k l}$ with respect to the B_{12} thermal parameters.

The new parameters are presented in Table 1. Except for the B_{12} 's, none of them differ from the previous values by as much as $0 \cdot 3 \sigma$. The revised descriptions of the thermal vibration ellipsoids are presented in Table 2, and the revised components of the rigid body tensors are presented in Table 3. The tensors were calculated both with and without the S tensor (Schomaker \& Trueblood, 1968). In this particular case, allowance for the additional degree of freedom made little difference to the results on the T and L tensors.

The final values for the interatomic distances and bond angles are depicted in Fig.1. Values for the bond lengths corrected for thermal motion (Busing \& Levy, 1964) are included in Fig. 1. The NH \cdots O hydrogen bond distances have not been corrected as it is not possible to determine

Fig.1. Bond distances and angles. Standard errors are given in parentheses, and bond distances corrected for libration are given in brackets.

Table 2. Vibration ellipsoids

	i	$\left.\left(r_{i}\right)^{2}\right)^{1 / 2}, \AA$	$q_{i a}$	$q{ }_{\text {ib }}$	$q{ }_{\text {ic }}$
O	1	$0 \cdot 241$	$-\sqrt{2 / 2}$	$-\sqrt{2 / 2}$	0
	2	0.219	$-\sqrt{2 / 2}$	V2/2	0
	3	$0 \cdot 132$	0	0	1
C	1	$0 \cdot 183$	$-\mathrm{V} 2 / 2$	$-\sqrt{2 / 2}$	0
	2	$0 \cdot 196$	$-\sqrt{2 / 2}$	$\sqrt{ } / 2$	0
	3	$0 \cdot 154$	0	0	1
N	1	$0 \cdot 200$	-0.6906	-0.6906	$0 \cdot 2146$
	2	0.332	$-1 / 2 / 2$	V/2/2	0
	3	$0 \cdot 146$	0.1517	$0 \cdot 1517$	0.9767

Table 3. Translation and librational root mean sqaure amplitudes

$\mathbf{T}^{1 / 2}$	$\mathbf{L}^{1 / 2}$	Direction
	(without \mathbf{S} tensor)	
$0 \cdot 193 \AA$	$4 \cdot 4^{\circ}$	$a+b$
0.196	$5 \cdot 1$	$a-b$
$0 \cdot 127$	$13 \cdot 3$	c
$\mathbf{T}^{1 / 2}$	$\mathbf{L}^{1 / 2}$	Direction
	(with \mathbf{S} tensor)	
$0 \cdot 193 \AA$	$4 \cdot 4^{\circ}$	$a+b$
$0 \cdot 196$	$4 \cdot 2$	$a-b$
0.133	$13 \cdot 3$	c

the degree of correlation between the thermal vibrations of neighbouring molecules. The changes in the bond distances and angles from the former values are all quite small; accordingly, no modification of the previous discussion of these is required.

References

Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142. Caron, A. \& Donohue, J. (1964). Acta Cryst. 17, 544. Palenik, G. (1962). I.U.Cr. World List of Crystallographic Computer Programs. No. 308, p. 34 (2nd ed.: p.46).
Vaughan, P. \& Donohue, J. (1952). Acta Cryst. 5, 530.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63.

Table 1. Thermal parameters and their standard errors ($\times 10^{2}$). Positional parameters* $\left(\times 10^{4}\right)$ and their standard errors ($\times 10^{4}$)

	$x(\sigma)$	$z(\sigma)$	$B_{11}(\sigma)$	$B_{33}(\sigma)$	$B_{12}(\sigma)$	$B_{13}(\sigma)$	$B(\sigma)$
O		$6000(8)$	$4.19(16)$	$1.37(15)$	$0.79(49)$		
C		$3305(12)$	$2.84(14)$	$1.88(21)$	$-0.40(50)$		
N	$1421(7)$	$1857(10)$	$5.90(17)$	$1.75(17)$	$-5.65(44)$	$-0.44(21)$	
$\mathrm{H}(1)$	$2378(100)$	$2784(115)$					$2.48(1.36)$
$\mathrm{H}(2)$	$1250(71)$	$0451(145)$				$0.83(1.06)$	

* The temperature factor has the form $\exp \left[-\left\{\left[B_{11}\left(h^{2}+k^{2}\right)+B_{12} h k\right] / 4 a^{2}+B_{13}(h l+k l) / 4 a c+B_{33} l^{2} / 4 c^{2}\right\}\right]$.

